A Novel Homozygous Mutation in FOXC1 Causes Axenfeld Rieger Syndrome with Congenital Glaucoma
نویسندگان
چکیده
BACKGROUND Anterior segment dysgenesis (ASD) disorders are a group of clinically and genetically heterogeneous phenotypes in which frequently cornea, iris, and lens are affected. This study aimed to identify novel mutations in PAX6, PITX2 and FOXC1 in families with anterior segment dysgenesis disorders. METHODS We studied 14 Pakistani and one Mexican family with Axenfeld Rieger syndrome (ARS; n = 10) or aniridia (n = 5). All affected and unaffected family members underwent full ophthalmologic and general examinations. Total genomic DNA was isolated from peripheral blood. PCR and Sanger sequencing were performed for the exons and intron-exon boundaries of the FOXC1, PAX6, and PITX2 genes. RESULTS Mutations were identified in five of the 15 probands; four variants were novel and one variant was described previously. A novel de novo variant (c.225C>A; p.Tyr75*) was identified in the PAX6 gene in two unrelated probands with aniridia. In addition, a known variant (c.649C>T; p.Arg217*) in PAX6 segregated in a family with aniridia. In the FOXC1 gene, a novel heterozygous variant (c.454T>C; p.Trp152Arg) segregated with the disease in a Mexican family with ARS. A novel homozygous variant (c.92_100del; p.Ala31_Ala33del) in the FOXC1 gene segregated in a Pakistani family with ARS and congenital glaucoma. CONCLUSIONS Our study expands the mutation spectrum of the PAX6 and FOXC1 genes in individuals with anterior segment dysgenesis disorders. In addition, our study suggests that FOXC1 mutations, besides typical autosomal dominant ARS, can also cause ARS with congenital glaucoma through an autosomal recessive inheritance pattern. Our results thus expand the disease spectrum of FOXC1, and may lead to a better understanding of the role of FOXC1 in development.
منابع مشابه
Novel mutations in the FOXC1 gene in Japanese patients with Axenfeld-Rieger syndrome
PURPOSE Mutations in the forkhead transcription factor (FOXC1) gene have been shown to cause juvenile glaucoma associated with a variety of anterior-segment anomalies. The purpose of this study was to determine the ocular and genetic characteristics of two Japanese families with Axenfeld-Rieger syndrome (ARS). METHODS Genomic DNA was extracted from the leukocytes of six members of two familie...
متن کاملStructural assessment of PITX2, FOXC1, CYP1B1, and GJA1 genes in patients with Axenfeld-Rieger syndrome with developmental glaucoma.
PURPOSE Axenfeld-Rieger (AR) is an autosomal dominant disorder with phenotypic heterogeneity characterized by anterior segment dysgenesis, facial bone defects, and redundant periumbilical skin. The PITX2 gene, on chromosome 4q25, and the FOXC1 gene, on chromosome 6p25, have been implicated in the different phenotypes of the syndrome through mutational events. Recently, the CYP1B1 gene was found...
متن کاملSevere molecular defects of a novel FOXC1 W152G mutation result in aniridia.
PURPOSE FOXC1 mutations result in Axenfeld-Rieger syndrome, a disorder characterized by a broad spectrum of malformations of the anterior segment of the eye and an elevated risk for glaucoma. A novel FOXC1 W152G mutation was identified in a patient with aniridia. Molecular analysis was conducted to determine the functional consequences of the FOXC1 W152G mutation. METHODS Site-directed mutage...
متن کاملSimultaneous Bilateral Implantation of Ex-Press Glaucoma Shunt for Secondary Glaucoma Treatment Due to Axenfeld-Rieger Syndrome: A Case Report
Axenfeld-Rieger Syndrome (ARS) is a rare genetic disease affecting multiple organ systems. In the eye, it can be manifested with varying degrees of anterior segment dysgenesis and it carries a high risk of glaucoma [1]. Recent advantages in molecular genetics have identified two major genes, PITX2 and FOXC1, demonstrating a wide spectrum of mutations, which aids in the molecular diagnosis of th...
متن کاملNovel c.300_301delinsT Mutation in PITX2 in a Korean Family with Axenfeld-Rieger Syndrome
Axenfeld-Rieger syndrome (ARS) is characterized by anomalies of the anterior segment of the eye and systemic abnormalities. Mutations in the FOXC1 and PITX2 genes are underlying causes of ARS, but there has been few reports on genetically confirmed ARS in Korea. We identified a novel PITX2 mutation (c.300_301delinsT) in 2 Korean patients from a family with ARS. We expand the spectrum of PITX2 m...
متن کامل